Approximation Algorithms by bounding the OPT

Instructor
Neelima Gupta
ngupta@cs.du.ac.in

Approximation Algorithms

- Approximate algorithms give approximate solution to NP-Complete problems which is close to optimum solution.

Maximization problems

E.g. Clique

Optimum clique $>$ Approx. clique $>=\frac{1}{2} *$ (Optimum clique)

Minimization problems

E.g. Vertex Cover

Minimum vc < Approx. vc < = $2^{*}($ Minimum vc)

Factor-2 algorithm

- Find a maximal matching in the graph and output the matched vertices.

Let S be this set of vertices.
Claim 1: S forms a vertex cover.
Proof: Suppose not. Then there exists an edge
$e=(u, v)$ such that neither u nor v is in S. This implies that the matching could have been extended by this edge e and hence was not maximal --- a contradiction.
Claim 2: $|S|<=2$ OPT
Proof: Weill prove this by giving some lower bound say LB for OPT and showing that $|S|<=2$ LB

Lower bounding the OPT

Claim: OPT $>=$ size of any (maximal) matching
Proof: Let M be a (maximal) matching. For every e $=(u, v)$ in M, any vertex cover must pick at least one of u and v. Hence size of any vertex cover $>=$ $|M|$. Hence, in particular, $O P T\rangle=|M|$

Clearly $|S|=$ 2* \mid maximal matching \mid
Hence Claim2 follows.

Can the approximation guarantee be improved?

- Following Qs need to be addresses
- Can the approximation guarantee be improved by a better analysis?
- Can an approximation algorithm with a better guarantee be designed using the lower bounding scheme of maximal matching?
- Is there some other lower bounding technique that can give an improved guarantee for vertex cover?

Tight Example

- What is the meaning of Q1?
- Can we get a solution S using the above algorithm such that $|S|<2^{*}$ OPT (for every instance of the problem)? Say $|S|=3 / 2$ * OPT?
- Answer to the Q is No. Here is an example of an instance on which the above algorithm will always give a solution whose cost $=2^{\star} O P T$.

Complete Bipartite Graph: $K_{n, n}$: OPT $=n,|S|=2 n$.

Q2

- i.e. Can we design an algorithm that gives a vertex cover solution S such that $|S|<2^{\star} \mid$ maximal matching| (for every instance of the problem)? Say | $S \mid<=3 / 2^{*}$ |maximal matchingl?
- Ans: No. Here is an example of an instance where the size of any vertex cover is at least 2 * |maximal matchingl.
- Example: K_{n} : Complete graph of size n, n odd.
|Size of maximal matchingl is $(n-1) / 2$ and OPT $=n-1$.
Thus the size of any vertex cover $>=$ OPT

$$
\begin{aligned}
& =n-1 \\
& =2 * \text { |maximal matching } \mid .
\end{aligned}
$$

Q3

Still an Open Problem!!!

Metric Travelling Salesman Problem

Problem Statement

Given A complete graph G with non-negative edge costs that satisfy triangle inequality

To Find A minimum cost cycle visiting every vertex exactly once.

Metric TSP - factor 2 approx. algorithm

1. Find an Minimum Spanning Tree (MST) T of G.
2. Double every edge of the MST to obtain an Eulerian graph.
3. Find a Eulerian tour, T^{\prime}, on G.
4. Output the tour that visits vertices of G in the order of their first appearance in T'. Call this tour C. (Short Cutting)

Example

Given a Complete Graph

Edges shown dotted do not carry weight and are assumed to be shortest path between the pair of vertices(due to triangular inequality).

Step1: Compute Minimum Spanning Tree

Step 2: Double each edge of MST

Step 3: Computing Eulerian Cycle

A cycle is one in which each edge visited exactly once

$\mathrm{v} 1 \rightarrow \mathrm{v} 2 \rightarrow \mathrm{v} 3 \rightarrow \mathrm{v} 4 \rightarrow \mathrm{v} 5 \rightarrow \mathrm{v} 6 \rightarrow \mathrm{v} 5 \rightarrow \mathrm{v} 4 \rightarrow \mathrm{v} 3 \rightarrow \mathrm{v} 7 \rightarrow \mathrm{v} 9$
$\rightarrow \mathrm{v} 10 \rightarrow \mathrm{v} 9 \rightarrow \mathrm{v} 7 \rightarrow \mathrm{v} 8 \rightarrow \mathrm{v} 7 \rightarrow \mathrm{v} 3 \rightarrow \mathrm{v} 2 \rightarrow \mathrm{v} 1$

Step 4: Computing solution for TSP

Approximate solution for TSP

$$
v 1 \rightarrow \mathrm{v} 2 \rightarrow \mathrm{v} 3 \rightarrow \mathrm{v} 4 \rightarrow \mathrm{v} 5 \rightarrow \mathrm{v} 6 \rightarrow \mathrm{v} \rightarrow \mathrm{v} 9 \rightarrow \mathrm{v} 10 \rightarrow \mathrm{v} 8 \rightarrow \mathrm{v} 1
$$

Metric TSP - factor 2 approx. algorithm

We now show that the proposed algorithm is indeed a factor 2 approximation algorithm for metric TSP

Observe that:
$>$ Removing any edge from an optimal solution to TSP would give a spanning tree of the graph.

So the cost of an MST in the graph can be used as lower bound for obtaining factor 2 for this algorithm

Metric TSP - factor 2 approx. algorithm

$>$ Therefore, $\operatorname{cost}(T)<=O P T$
$>T^{\prime}$ contains each edge of T twice, so $\operatorname{cost}\left(T^{\prime}\right)=$ $2^{*} \operatorname{cost}(T)$
$>$ Also, $\operatorname{cost}(C)<=\operatorname{cost}\left(T^{\prime}\right)$ because of triangle inequality
$>$ Hence cost $(C)<=2 * O P T$

FACTOR 3/2 APPROXIMATION ALGORITHM FOR TSP

Metric TSP - improving the factor to 3/2

Observations:
Consider why did we have to double the MST - to obtain an Euler tour.

Can we have an Euler tour with lower cost?
YES!

A graph has an Euler tour if and only if all its vertices have even degrees. We therefore need to be bothered about the vertices of odd degree only.

Metric TSP - improving the factor to 3/2

$>$ Let V' be the set of vertices of odd degree
> Cardinality of V' must be even. WHY?
Because the sum of degrees of all vertices in MST has to be even.
$>$ Add to the MST, a minimum cost perfect matching on V' so that every vertex has an even degree.
$>$ We also know that a polynomial time algorithm exists for finding the minimum cost perfect matching.

Metric TSP - factor 3/2 approx. algorithm

$>$ Step 1: Find an MST, T, of G.
$>$ Step 2: Compute a minimum cost perfect matching, M, on the odd degree vertices of T. Add M to T and obtain an Eulerian graph.
$>$ Step 3: Find an Euler tour, T ', of this graph.
$>$ Step 4: Output the tour that visits vertices of G in order of their first appearance in T^{\prime}. Call this tour C.

Step1: Compute Minimum Spanning Tree

Step2: Compute Minimum Cost Perfect Matching

V1, V3, V6, V7, V8, V10 are odd degree vertices

Step 3: Computing Eulerian Cycle

A cycle is one in which each edge visited exactly
once

Eulerian Cycle :
$\mathrm{V} 1 \rightarrow \mathrm{~V} 2 \rightarrow \mathrm{~V} 3 \rightarrow \mathrm{~V} 4 \rightarrow \mathrm{~V} 5 \rightarrow \mathrm{~V} 6 \rightarrow \mathrm{~V} 3 \rightarrow \mathrm{~V} 7 \rightarrow \mathrm{~V} 9 \rightarrow \mathrm{~V} 10 \rightarrow \mathrm{~V} 7 \rightarrow$ $\mathrm{V} 8 \rightarrow \mathrm{~V} 1$

Step 4: Computing solution for TSP

Solution for TSP :

$\mathrm{V} 1 \rightarrow \mathrm{~V} 2 \rightarrow \mathrm{~V} 3 \rightarrow \mathrm{~V} 4 \rightarrow \mathrm{~V} 5 \rightarrow \mathrm{~V} 6 \rightarrow \mathrm{~V} 7 \rightarrow \mathrm{~V} 9 \rightarrow$ $\mathrm{V} 10 \rightarrow \mathrm{~V} 8 \rightarrow \mathrm{~V} 1$

Approximate solution for TSP

Solution for TSP :

$\mathrm{V} 1 \rightarrow \mathrm{~V} 2 \rightarrow \mathrm{~V} 3 \rightarrow \mathrm{~V} 4 \rightarrow \mathrm{~V} 5 \rightarrow \mathrm{~V} 6 \rightarrow \mathrm{~V} 7 \rightarrow \mathrm{~V} 9 \rightarrow \mathrm{~V} 10$ $\rightarrow \mathrm{V} 8 \rightarrow \mathrm{~V} 1$

Metric TSP - factor 3/2 approx. algorithm

In order to show that the proposed algorithm is a factor 3/2 approximation algorithm for metric TSP, we first need to understand the following:
Given a subset V' of V with even number of
elements, and a minimum cost perfect matching M on $V^{\prime}, \operatorname{cost}(M)<=O P T / 2$

Let us try to prove the above result!

Metric TSP - factor 3/2 approx. algorithm

- Consider an optimal TSP tour of G, say t.
- Let t' be the tour on V' obtained by shortcutting t.
- Clearly, $\operatorname{cost}\left(t^{\prime}\right)<=\operatorname{cost}(t)$ because of triangle inequality.
- Now t' is the union of two perfect matchings on V' each consisting of alternate edges of t. Therefore, the cheaper of these matchings has cost $<=\operatorname{cost}\left(t^{\prime}\right) /$ $2<=O P T / 2$.

Hence the optimal matching also has cost at most OPT/2.

Metric TSP - factor 3/2 approx. algorithm

In view of this result, let us now see if the proposed algorithm ensures an approximation guarantee of $3 / 2$ for metric TSP Problem

Cost of the Euler tour,
$\cos t\left(T^{\prime}\right) \leq \cos t(T)+\cos t(M) \leq O P T+1 / 2 O P T=3 / 2 O P T$
Using triangle inequality, $\operatorname{cost}(C)<=\operatorname{cost}\left(T^{\prime}\right)$.
Hence Proved!

Acknowledgements

- Swati Singhal
- Varun Mendiratta
- Sumedha Upadhyaya
- Prachi Nagpal

Any Questions....

Thank You!

